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1. Introduction

Thermal transport in nonmetallic solids is contributed by
atomic vibration through two conduction mechanisms, that
is, particle-like propagating (population) and wave-like tunnel-
ing (coherence).[1–5] Particle-like propagation is understood in
the phonon picture and phonon Boltzmann transport equation
(PBTE)[6] combined with first-principle calculations has allowed
quantitative prediction of its contribution to thermal conductiv-
ity (κ), in good agreement with experimental results for most
crystalline materials.[7–11] In the PBTE computational frame-
work, significant anharmonic effects on κ from phonon scatter-
ings and frequency shifts have been demonstrated in various
crystalline semiconductors.[12–18] On the other hand, coher-
ences assume increasing significance when the linewidths of
the vibrational modes are comparable with the interbranch
spacings,[4] that is, the case in complex crystals[1,5,19,20] and

amorphous solids.[21–29] Allen and
Feldman[30] first proposed a formulation
for the coherences’ contribution to κ by
considering the off-diagonal elements of
the velocity operator[31,32] missed in
PBTE. The Allen–Feldman (AF) theory
considers the coupling of quasidegenerate
vibrational modes and is appropriate for
harmonic disordered solids. The role of
anharmonicity has been regarded as a
potential reason for the failure of the
harmonic AF theory in some polymeric
and chalcogenide glasses,[25,33] but the
anharmonicity of the vibrational modes
is still little considered and inadequately
explored in the computational study
regarding the thermal transport in amor-
phous solids.

A widely investigated case for
thermal transport is amorphous silica
(a-SiO2), with extensive applications in
microelectronics.[34–36] The temperature-

dependent κ of a-SiO2 has been reported at a wide temperature
range (1–1200 K) in various experimental studies,[37–40] but the
underlying mechanisms are complex and not fully understood.
Zhu and Ertekin reproduced the plateau of the temperature-
dependent κ at about 10 K by considering the coexisting
populations’ and coherences’ conduction mechanisms in a
model generalized from the Debye–Peierls and AF theory.[41]

At higher temperatures but below room temperature, κ is dom-
inated by coherences and can be predicted by the quantum AF
theory.[42,43] However, above room temperature, the increasing
κ with rising temperature is beyond the scope of the current
theories. Although the Green–Kubo modal analysis (GKMA)
method could lead to an agreeable prediction of κ with the
experimental results at high temperatures,[44] how the anhar-
monic frequency shifts and high-order interactions of the vibra-
tional modes affect the heat conduction in a-SiO2 is still unclear
and deficiently understood.

In this article, we are devoted to investigating the anhar-
monic effects on thermal transport mechanisms in amorphous
silica, especially at high temperatures. Using the molecular
dynamics (MD)-based normal mode decomposition (NMD)
method, we demonstrate the significant anharmonic frequency
shifts and temperature-dependent linewidths of the vibrational
modes in a-SiO2. The unsolved positive temperature depen-
dence of κ at high temperatures is reproduced by the Wigner
transport equation (WTE). The underlying anharmonic effects
and the coexisting particle-like and wave-like conduction mech-
anisms are further illustrated thoroughly.
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The anharmonicity of thermal transport in amorphous solids is underappreciated
and inadequately understood, although considerable attention is paid to that of
crystals. Herein, the anharmonic effects on the heat conduction of amorphous
silica are investigated by combining the normal mode decomposition method
with the Wigner transport equation. The existence of significant anharmonicity in
amorphous silica, including temperature-dependent linewidths and frequency
shifts of the vibrational modes, is demonstrated. By considering the anharmonic
effects, the predicted temperature dependence of thermal conductivities at high
temperatures agrees well with the increasing trend observed in experiments. The
underlying mechanisms are further revealed. The anharmonic frequency shifts
notably affect the strength of coupling between pairs of vibrational modes and
dictate the positive temperature dependence, whereas the increasing linewidths
with increasing temperature are of minor importance. This work contributes to
the understanding of the anharmonicity of thermal vibrations and heat con-
duction in amorphous materials.
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2. Computational Method

Under single-mode relaxation time approximation of the
WTE,[4,42,45] κ is calculated by

κ ¼ 1
VNc

X
q

X
s,s’

ωqs þ ωqs0

4
Cqs

ωqs
þ Cqs0

ωqs0

 !
⋅
v2q, ss0
3

⋅
1
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� �
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2 þ ΓqsþΓqs0
2

� �
2 (1)

in which V is the volume of the considered cell, ωqs, Cqs, and Γqs
are angular frequency, specific heat, and linewidth, respectively,
for each vibrational mode. In Equation (1), vq,ss’ is the modulus of
the velocity operator element averaged in three Cartesian direc-
tions for each pair of modes. Here, the average velocity operator
is adopted since amorphous solids are always isotropic. The sum-
mation of the diagonal elements corresponds to the populations’
contribution to κ, while the summation of the off-diagonal ele-
ments corresponds to the coherences’, and both are operated
over all the vibrational modes at Nc q points in reciprocal space.
To calculate κ, the frequency and linewidth of each mode
are needed. In general, the frequency and velocity operators
are from harmonic lattice dynamics calculation and the linewidth
is from the perturbation theory,[10,46] including three- or higher-
order scatterings. Here, the anharmonic properties of vibrational
modes are predicted by the MD-based NMD method[13,21,47]

using DynaPhoPy, which has been tested by comparing the
predicted linewidths and frequency shifts with experimental
results of Raman spectroscopy.[13] Full-order scatterings are
included implicitly in the MD simulations performed using
the LAMMPS package[48] and the harmonic properties are calcu-
lated by phonopy.[49] The atomic interactions in a-SiO2 are
described by Tersoff potential,[50] which has been validated
and widely used in MD studies[44,51,52] for thermal transport
of a-SiO2. More computational details are presented in Section
S1, Supporting Information.

3. Results and Discussion

The power spectra of a certain vibrational mode at 300 and 900 K
are illustrated in Figure 1a,b, in which the mode linewidth (Γqs),
computed from the full width at half maximum of the spectra
peak, and the frequency shift (Δωanh

qs ), referring to the difference
between anharmonic frequency (ωanh

qs , the spectra peak position)
and the harmonic frequency (ωqs

0 ), are all marked. The negative
frequency shift (softening) and power spectra broadening
at higher temperatures are observed for the vibrational modes,
shown in Figure 1c,d. The frequency shifts can be caused by ther-
mal expansion or the anharmonic interactions, while the latter
dominates at high temperatures.[15] We also quantitatively eval-
uate the effects of thermal expansion using the quasiharmonic
approximation. The frequency shifts due to thermal expansion
are much slighter than those from anharmonicity due to the
low thermal expansion coefficient of a-SiO2. The calculation
methods and results are presented in Section S3, Supporting
Information. The softening effects due to the anharmonicity

of vibrational modes observed in a-SiO2 are similar to the
situations in silicon[13,15,18] and some thermoelectric semicon-
ductors.[53,54] The negative frequency shifts become more signif-
icant at higher temperatures, with the maximum shift reaching
�1.0 THz and the average frequency shift equaling�0.40 THz at
900 K, much larger than�0.12 THz at 300 K. The linewidths also
notably depend on temperature and become larger at higher tem-
peratures due to stronger anharmonic interactions of the vibra-
tional modes. We note that the Lorentzian spectral function
approximation (LSFA) can still be used although the spectral
energy deviates from the perfect Lorentzian to some extent
because the criterion (Γ<ω/2π) is satisfied,[45,55] as shown in
Figure 1d. Based on the results reported here, we conclude that
the frequency shifts and linewidths of the vibrational modes in
a-SiO2 exhibit significant anharmonicity.

We also examine if the anharmonicity is important for the
velocity operator by comparing the results based on the renor-
malized force constants at different temperatures. As seen in
Figure 2a,b, the density distribution of all the velocity operator
elements and the diagonal elements (equal to group velocity)
versus mode frequency are both temperature-independent.
Considering that the diagonal velocity operator elements are
odd functions of q, the q-interpolation calculation is necessary
and the convergence needs to be checked. The velocity operator
elements calculated over the uniform 2� 2� 2 and 3� 3� 3
q-mesh are illustrated in Figure 2c,d. Negligible differences exist
and we attribute this to the large cell (with 300 atoms in this
paper) used for the calculation. Thus, the 2� 2� 2 q-mesh is
used to calculate κ of a-SiO2 for lower computational cost. We
also carried out supplementary studies to check the effects

Figure 1. Power spectra of a vibrational mode of amorphous silica at
a) 300 K and b) 900 K. c) The anharmonic frequency shifts (Δωanh) and
d) linewidths (Γ) of the vibrational modes in amorphous silica at various
temperatures.
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of the sample size, thermal expansion, and atom diffusion. The
calculation details and results are given in S2–S4, Supporting
Information. Three more a-SiO2 samples (with 192, 648, and
1536 atoms) were generated and the predictions of κ using
the WTE are size independent. The size independence is consis-
tent with the measurement using frequency domain thermore-
flectance.[56] The effects of thermal expansion on thermal
conductivities, calculated using the quasiharmonic method,
are much slighter than anharmonic effects, due to the low coef-
ficient of thermal expansion of a-SiO2. At high temperatures, the
atom diffusion might invalidate the approximation of the atomic
equilibrium positions in WTE and even contribute to the thermal
conductivity.[57,58] By calculating the contribution to heat flux
from atom diffusion, that is, kinetic part, in nonequilibrium
molecular dynamics simulations from 300 to 1200 K, we confirm
the neglectable effects of atom diffusion on thermal conductivity

(<0.5%). As for the possible change of the atomic equilibrium
positions due to low activation energy[59] and metastability,[21]

we add an annealing process when generating the amorphous
structures of silica to remove such effects as much as possible.
Here, the calculations are carried out up to 1200 K, lower than the
glass transition temperature of a-SiO2 (1480 K[60]), to avoid
possible significant effects of atom diffusion.

The anharmonic effects on κ are normally attributed to the
change of the group velocity, specific heat, and lifetime
under the PBTE framework for particle-like propagation for
the vibrational modes.[18] For a-SiO2, the coherences’ contribu-
tion is important and we extend the discussion by considering
both conduction mechanisms. The temperature-dependent
κ of a-SiO2, including the contribution from populations
and coherences, is calculated using the WTE formulation
[Equation (1)]. The total κ is reported in Figure 3a, compared with

Figure 2. a) Density distribution of the square modulus of the velocity operator elements and b) the modulus of diagonal velocity operator elements at
300 and 900 K based on the renormalized force constants.[13] c) Density distribution of the square modulus of the velocity operator elements and d) the
modulus of diagonal velocity operator elements from the calculations over 2� 2� 2 and 3� 3� 3 q-mesh.

Figure 3. Temperature-dependent thermal conductivities of amorphous silica. a) Total thermal conductivity from the experiments,[37,38,40] the generalized
Debye–Peierls/Allen–Feldman model,[41] and the calculation based on WTE in this article. b) Contribution to thermal conductivity from populations and
coherences from the theoretical models[41] and the calculation based on WTE in this article in logarithmic coordinates, compared with the experimental
total thermal conductivity.[39,40] The inset shows the coherences’ conductivity from classical WTE in linear y-axis coordinates.
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the results from the experiments[37,38,40] and the generalized
Debye–Peierls/Allen–Feldman (DPAF) model.[41] Here, the
classical, quantum, and anharmonic WTE are defined and used
to predict the thermal conductivities to figure out the quantum
and anharmonic effects. The definitions and the differences are
listed in Table 1.

The results from classical WTE assume all the vibrational
modes are fully excited, i.e., the mode-specific heat Cqs = kB
(Boltzmann constant), while in quantum WTE

Cqs ¼ kB
ℏω=2kBT

sinh ℏωð =2kBTÞ
� �

2
(2)

which is from considering the quantum Bose–Einstein distribu-
tion for the vibrational modes. The difference between quantum
and classical WTE diminishes with the temperature rising and
the difference of κ< 0.1WmK�1 above 700 K. These results at
high temperatures are also in good agreement with the direct
MD simulations,[51,61,62] in which the quantum effect is ignored.
By considering the quantum effects, our calculation and the
DPAF model both capture the temperature dependence below
room temperature, but fail to describe the increasing trend at
higher temperatures observed in the experiments. This increas-
ing trend is also beyond the description of WTE with three-order
anharmonic scatterings considered.[42] Our results from quan-
tum and classical WTE rely on the linewidths predicted by the
MD-based NMD method and include the full-order scatterings.
The failure of the WTE including three-order or full-order anhar-
monic scatterings indicates that the discrepancy between theoret-
ical and experimental κ at high temperatures is not caused by the
omission of the higher-order anharmonic interactions for calcu-
lation of linewidths. We further consider the effects of anhar-
monic frequency shifts in WTE and the results (marked as
anharmonic WTE) accord closely with the temperature depen-
dence of κ observed in the experiments. The differences between
the results from anharmonic and quantumWTE are also notable,
about 0.24WmK�1 (26%) at 300 K and 0.52WmK�1 (44%) at
1200 K. These findings indicate that the anharmonic frequency
shift is a dominant factor for the increasing trend of κ at high
temperatures. The GKMA method, based on MD simulations,
also well reproduced the increasing trend and used the same
potential.[44] The results from anharmonic WTE are smaller than
those of GKMA by 0.15–0.3WmK�1 from 300 to 1200 K. The

difference might be due to the deviation from the perfect
Lorentzian of the mode energy spectral[63,64] and the higher-order
heat flux[65] that are implicitly included in the MD simulation but
not included in WTE. Also, the quantum-specific heat correction
in GKMA, excluding the difference between each pair of modes
in coherences’ contribution, may cause a discrepancy. These
effects might be further explored quantitatively in the future,
and we focus on the significant effects and the underlying mech-
anisms of the anharmonic frequency shifts in this article.

Populations’ and coherences’ contributions to κ are also
quantified at a wider temperature range and shown under loga-
rithmic coordinates in Figure 3b. The predicted populations and
coherences’ κ from quantum WTE agree with those from the
Debye–Peierls and Allen–Feldman models, respectively, regard-
ing both the magnitude and the temperature dependence. The
coherences’ contribution decreases faster with the decreasing
temperature, and the competence of the coexisting conduction
mechanisms leads to the plateau at about 10 K. Above 100 K,
the coherences’ contribution is orders larger than that from pop-
ulations, similar to the most cases for amorphous solids in which
coherences dominate the heat conduction. Compared with the
results considering the anharmonic frequency shifts, we addi-
tionally demonstrate that the increasing κ with rising tempera-
ture is due to coherences’ anharmonicity and the frequency
shifts almost have no influence on populations’ contribution.
The classical WTE excludes the quantum effects and well reflects
the effects from temperature-dependent mode linewidths on
κ. The classical results show that the increasing linewidths of
the vibrational modes at higher temperatures result in the
smaller populations’ κ but slightly larger coherences’ contribu-
tion (see the inset of Figure 3b). Nevertheless, the dominant
coherences’ contribution and much more significant effects
from quantum distribution and anharmonic frequency shifts
overshadow the effects on κ from the temperature-dependent
mode linewidths in a-SiO2.

To further investigate the underlying mechanisms of the
anharmonicity of thermal transport of a-SiO2, we calculate the
mode resolved thermal conductivity (κqs) by the decomposing
coherences’ contribution from each pair of vibrational modes
weighted by specific heat, and then the total κ can be calculated
by a compact form

κ ¼ 1
Nc

X
qs

κqs ¼
1

VNc

X
qs

CqsDqs (3)

By introducing the mode diffusivity (Dqs) in Equation (3), the
effects from specific heat and the coupling strength of each
pair of vibrational modes can be decoupled. Here, the diffusivity
represents the coupling strength of coherences’ coupling,
similar to the diffusivity predicted by the AF theory, but includ-
ing the anharmonicity and without empirical parameters.
Temperature-dependent linewidths and frequency shifts are
two important factors for the coherences’ coupling strength.
Figure 4a–c show the mode diffusivities of a-SiO2 with or without
considering the anharmonic frequency shifts at various temper-
atures. The stronger coupling strength at higher temperatures is
observed, which is due to the increasing mode linewidths. At 300
and 900 K, anharmonic frequency shifts cause stronger
coherences’ coupling, especially for the high-frequency modes,

Table 1. Definitions of classical WTE, quantum WTE, and anharmonic
WTE.

– Definition

Classical WTE Considering neither quantum effect nor

anharmonic frequency shifts Cqs = kB, ωqs = ω0
qs

Quantum WTE Considering quantum effect but without considering
anharmonic frequency shifts

Cqs = kB
ℏωqs=2kBT

sinh ℏωqsð =2kBTÞ

� �
2
, ωqs = ω0

qs

Anharmonic
WTE

Considering both quantum effect and anharmonic

frequency shifts Cqs = kB
ℏωqs=2kBT

sinh ℏωqsð =2kBTÞ

� �
2
,

ωqs = ωanh
qs = ω0

qs þ Δωanh
qs
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corresponding to the non-negligible contribution of locons
observed in previous direct MD simulation.[44] Our calculation
further demonstrates that the contribution highly depends on
the anharmonic frequency shifts. As for the specific heat, the
temperature dependence is related to the frequency shifts and
can be interpreted from Equation (2), based on considering
the quantum Bose–Einstein distribution for the vibrational
modes. The separate anharmonic effects through specific heat
and coherences coupling strength can be quantified by only con-
sidering the frequency shifts in a mode-specific heat and diffu-
sivity, as shown by the thermal conductivity density of states (κω)
and cumulative thermal conductivity (κcum) at various tempera-
tures in Figure 4d–i. Considering anharmonic frequency shifts
result in almost the same κω and κcum with those from the regular
WTE. This suggests that the anharmonicity of mode-specific heat
is of little importance and is consistent with the good agreement
between the specific heat calculated without considering the fre-
quency shifts and experimental results.[42] In contrast, the anhar-
monicity of coherences’ coupling has a substantial effect on κ.
The effect originates from all the vibrational modes and becomes
more dramatic at higher temperatures, especially for the high-
frequency modes. The findings here demonstrate the necessity
of considering anharmonic effects for predicting coherences’
conductivity.

4. Conclusion

To conclude, we combined the NMD techniques and the
unified WTE formulation, which can account for the coexisting

populations and coherences’ conduction mechanisms, as well
as the anharmonicity, to investigate the thermal transport in
amorphous silica. Significant anharmonicity, including the tem-
perature-dependent vibrational mode linewidths and anharmonic
frequency shifts, exists in a-SiO2. The linewidths become larger
and the negative frequency shifts become more dramatic with
increasing temperature. The larger frequency shifts lead to higher
coherences’ coupling strength and dictate the increasing tempera-
ture dependence of κ at high temperatures, while the varied mode
linewidths have neglectable effects on both populations’ and coher-
ences’ conductivity. Our findings offer new insights into heat con-
duction in amorphous solids regarding the anharmonicity and are
also instructive for low-κ crystals and other disordered materials, in
which coherences are important for thermal transport.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Figure 4. Diffusivities (Di) calculated with and without including anharmonic frequency shifts at a) 100 K, b) 300 K, and c) 900 K. Thermal conductivity
density of states (κω) and cumulative total thermal conductivity (κcum) from WTE, at d) 100 K, e) 300 K, and f ) 900 K, with and without considering
anharmonic frequency shift in the specific heat (Cqs) of each vibrational mode. κω and κcum from WTE, at g) 100 K, h) 300 K, and i) 900 K, with
and without considering anharmonic frequency shift in the diffusivity (Dqs) of each vibrational mode.
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